Synthesis and Characterization of the Food-Derived Carcinogens 2-(Hydroxylamino)-α-carboline and 2-(Hydroxylamino)-3-methyl-α-carboline

Shahrokh Kazerani and Michael Novak*

Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056

Received September 25, 1997

Introduction

2-Amino- α -carboline (A α C) and 2-amino-3-methyl- α carboline (MeA α C) are representative of a large group of heterocyclic amines formed by pyrolysis of proteins and amino acid mixtures.¹ These materials have also been isolated in parts per billion concentrations from broiled and fried meats, fish, and protein-rich plant material and have been shown to be mutagenic to Salmonella in the presence of rat liver homogenates.¹ The compounds are also carcinogenic in mice and rats, with cancers of the liver and intestine being most prominent.² These heterocyclic amines are now considered to be probable human carcinogens.^{2,3} Average daily intake of heterocyclic amines is diet-dependent but appears to range from 0.1 to 15 μ g/person in most developed countries.⁴ At these levels it is believed that heterocyclic amines constitute a significant cancer risk to human populations.5

The heterocyclic amines are promutagens/procarcinogens that require oxidative metabolism for activation. The likely activation processes are shown in Scheme 1.⁶ Although the heterocyclic hydroxylamines are central to this process, in many cases these compounds have not

(2) Sugimura, T. *Mutat. Res.* **1985**, *150*, 33–41. Ohgaki, H.; Matsukura, N.; Morino, K.; Kanachi, T.; Sugimura, T.; Takayama, S. *Carcinogenesis* **1984**, *5*, 815–819.

(3) Eisenbrand, O.; Tang, W. Toxicology 1993, 84, 1-82.

(4) Murray, S.; Gooderham, N. J.; Boobis, A. R.; Davies. *Carcino*genesis **1989**, *10*, 763–765. Ushiyama, H.; Wakabayashi, K.; Hirose, M.; Itoh, M.; Sugimura, T.; Nagao, M. *Carcinogenesis* **1991**, *12*, 1417– 1422. Wakabayashi, K.; Nagao, M.; Esumi, H.; Sugimura, T. *Cancer Res.* **1992**, *52* (Suppl.), 2092s–2098s.

(5) Adamson, R. H.; Thorgeirsson, U. P.; Snyderwine, E. G.; Thorgeirsson, S. S.; Reeves, J.; Dalgard, D. W.; Takayama, S.; Sugimura, T. Jpn. J. Cancer Res. **1990**, *81*, 10–14. Felton, J. S.; Knize, M. G.; Roper, M.; Fultz, E.; Shen, N. H.; Turtetaub, K. W. Cancer Res. **1992**, *52* (Suppl.), 2103s–2107s. Gaylord, P. W.; Kadlubar, F. F. In Mutagens in Food. Detection and Prevention; Hayatsu, H., Ed.; CRC Press: Boca Raton, FL, 1991; pp 229–236.

M. Food. Detection and Prevention, Hayatsu, H., Ed., CKC Press. Boca
Raton, FL, 1991; pp 229–236.
(6) Yamazoe, Y.; Shimada, M.; Kamataki, T.; Kato, R. Cancer Res. **1983**, 43, 5768–5774. Yamazoe, Y.; Tada, M.; Kamataki, T.; Kato, R.
Biochem. Biophys. Res. Commun. **1981**, 102, 432–439. Gilissen, R.
A. H. J.; Bamforth, K. J.; Stavenuiter, J. F. C.; Coughtrie, M. W. H.;
Meerman, J. H. N. Carcinogenesis **1994**, 15, 39–45. Shinohara, A.;
Saito, K.; Yamazoe, Y.; Kamataki, T.; Kato, R. Cancer Res. **1986**, 46, 4362–4367. Yamazoe, Y.; Shimada, M.; Kamataki, T.; Kato, R.
Biochem. Biophys. Res. Commun. **1982**, 107, 165–172. Snyderwine, E. G.; Wirth, P.J.; Roller, P. P.; Adamson, R. H.; Sato, S.; Thorgeirsson, S. S. Carcinogenesis **1988**, 9, 411–418. Meerman, J. H. N.; Ringer, D. P.; Coughtrie, M. W. H.; Bamforth, K. J.; Gilissen, R. A. H. J. Chem.-Biol. Interact. **1994**, 92, 321–328.

been isolated or are incompletely characterized in the literature. In the case of the α -carbolines, the synthesis of 2-(hydroxylamino)- α -carboline (NHOH α C) has recently been reported from 2-nitro- α -carboline (NO₂ α C) with few experimental details and incomplete product characterization.⁷ The nitro derivative of MeA α C, MeNO₂ α C, has also been reported in the literature, but attempts to synthesize the hydroxylamine, MeNHOH α C, from the nitro compound were unsuccessful.⁸ Since we have embarked on a study of the chemical basis of heterocyclic amine carcinogenesis, we needed to develop reliable procedures for the synthesis and purification of the hydroxylamine derivatives of the heterocyclic amines. Herein we report the synthesis and purification of NHOHaC and MeNHOHaC and complete spectral characterization of both compounds.

Results and Discussion

The parent amines (A α C and MeA α C) were synthesized, with minor modifications, from published procedures.⁹ The amines are also commercially available, but expensive.¹⁰ Our synthetic procedures for the formation of the hydroxylamines are outlined in Scheme 2.

Many different routes were attempted for the synthesis of $NO_2\alpha C$ and $MeNO_2\alpha C$, but most failed, presumably

^{*} To whom correspondence should be addressed. Phone: 513-529-2813. Fax: 513-529-5715. E-mail: MINOVAK@ MIAMIU.ACS.MUOHIO.EDU.

⁽¹⁾ Hatch, F. T.; Knize, M. G.; Felton, J. S. *Environ. Mol. Mutagen.* **1991**, *17*, 4–19. Felton, J. S.; Knize, M. G.; Shen, N. H.; Andersen, B. D.; Bjeldanes, L. F.; Hatch, F. T. *Environ. Health Perspect.* **1986**, *67*, 17–24. Sugimura, T. *Environ. Health Perspect.* **1986**, *67*, 5–10.

⁽⁷⁾ Raza, H.; King, R. S.; Squires, B.; Guengerich, F. P.; Miller, D. W.; Freeman, J. P.; Lang, N. P.; Kadlubar, F. F. *Drug Metab. Dispos.* **1996**, *24*, 395–400.

⁽⁸⁾ Pfau, W.; Brocksted, U.; Shulze, C.; Neurath, G.; Marquardet, H. *Carcinogenesis* **1996**, *17*, 2727–2732.

⁽⁹⁾ Hibino, S.; Sugino, E.; Kuwada, T.; Ogura, N.; Shintani, Y.; Satoh, K. *Chem. Pharm. Bull.* **1991**, *39* (1), 79–80.

⁽¹⁰⁾ Toronto Research Chemicals, Inc., North York, Ontario, Canada (in U.S. dollar, MeAαC ca. \$430/100 mg, AαC ca. \$300/100 mg).

due to the relatively strongly acidic conditions employed. This oxidation step has proven to be a significant synthetic problem in the chemistry of these carcinogens.^{7,8,11,12} We tried to take advantage of a procedure using mildly acidic conditions published by Grivas.¹¹ In this procedure the amine is dissolved in a 50:50 mixture of DMF/AcOH, which is then added to a stirred concentrated solution of NaNO₂ at room temperature. This method provides $NO_2\alpha C$ and $MeNO_2\alpha C$ in very low yields (less than 10%). Later, our attention was focused on a procedure, reported by Saito et al., in which Trp-P-2 (a heterocyclic amine carcinogen structurally similar to A α C) was oxidized to its nitro derivative.¹² With a few modifications, this method provided MeNO₂ α C and NO₂ α C in 20-37% yield. The yields are low but are superior to the other methods in our hands.

Both MeNO₂ α C and NO₂ α C were synthesized in the following manner: The amine (A α C or MeA α C) was dissolved in a mixture of CH₃OH and acetic acid (500:1, v/v). To this solution were added 30% H₂O₂ and Na₂-WO₄·2H₂O. The mixture was stirred for 24 h at 50–55 °C. Reaction progress was monitored by HPLC. After workup and column chromatography, a yellow solid product was isolated. Complete spectral characterization of these compounds is provided in the Experimental Section and Supporting Information.

¹H NMR spectra of MeNO₂ α C and NO₂ α C show the disappearance of the singlet for NH₂ protons observed near 6.0 ppm for A α C and MeA α C. All aromatic proton peaks are shifted downfield due to the deshielding effect of the nitro group. In the case of MeNO₂ α C, there is also a distinct shift of the methyl group from 2.15 to 2.58 ppm.

Reduction of MeNO₂ α C and NO₂ α C by N₂H₄·H₂O using a modification of a procedure reported by Westra¹³ generated NHOH α C and MeNHOH α C in good yield. These hydroxylamines are not very stable neat or in solution at room temperature but are stable enough in DMSO that ¹H and ¹³C NMR spectra can be obtained. No decomposition of these products was observed when the hydroxylamines were kept under nitrogen at -80 °C for a period of 60 days. Both compounds are subject to air oxidation in solution and also undergo apparent acidcatalyzed decomposition in H₂O.

Generally, ca. 100 mg of the nitro compound was dissolved in 100 mL of dry, peroxide-free (freshly distilled) THF in the presence of 135 mg of 5% Pd/C at -20 °C. Then 200 μ L of N₂H₄·H₂O was added to the mixture in four portions of 50 μ L each. About 15 min after each addition of N₂H₄·H₂O, the temperature was allowed to increase from -20 to 0 °C and remain at 0 °C for ca. 1 min. A sample was removed for HPLC, the temperature was reduced again to -20 °C, and the next portion of N₂H₄·H₂O was added to the mixture. After 1.5 h the Pd/C was filtered off, and the solvent was removed by rotary evaporation. The product was rapidly recrystallized from EtOAc and hexanes at -20 °C to provide a 75–85% yield of the hydroxylamine.

Further reduction of the hydroxylamine to the amine was observed when the reaction was performed at uniform higher temperatures (-5 to 0 °C). Mixtures of both NHOH α C and A α C were obtained, even with shorter reaction times and reduced amounts of N₂H₄·H₂O.

NHOH α C and MeNHOH α C were fully characterized by ¹H, ¹³C, DEPT, NOESY, and COSY NMR, MS, and IR. Copies of ¹H and ¹³C NMR spectra and tables of NOESY and COSY NMR correlations are provided in the Supporting Information.

The ¹H NMR spectra of NHOH α C and MeNHOH α C show the appearance of two new exchangeable protons at 8.3–8.8 ppm that correspond to the NH and OH protons of the hydroxylamines. All aromatic protons are shifted upfield as expected. In the case of MeNHOH α C, there is also an upfield shift of the methyl group from 2.58 to 2.17 ppm. ¹H and ¹³C NMR spectra of NHOH α C and MeNHOH α C are nearly identical with those of the corresponding amines, A α C and MeA α C, with the exception of the NHOH protons of the hydroxylamines and the NH₂ protons of the amines. This indicates that the hydroxylamine tautomer, not oxime tautomer (eq 1), is the correct structural representation for these compounds.

We are attempting to improve the yields of the nitro compounds and are testing the applicability of these procedures to the synthesis of hydroxylamine derivatives of the other carcinogenic heterocyclic amines. The results of these studies and characterization of the aqueous solution chemistry of the hydroxylamines and their carboxylic or sulfuric acid esters will be presented elsewhere.

Experimental Section

Caution: All compounds reported in this section are known⁸ or likely mutagens and should be treated as probable human carcinogens.

2-Nitro-α-carboline (2-Nitro-9H-pyrido[2,3-b]indole) and 3-Methyl-2-nitro-α-carboline (3-Methyl-2-nitro-9H-pyrido-[2,3-b]indole). General Procedure. In a 250-mL roundbottom flask, 0.5 mmol of AaC (92 mg) or MeAaC (99 mg) was dissolved in a mixture of 50 mL of MeOH and 0.1 mL of concentrated acetic acid. To this solution was added 50 mL of 30% H₂O₂. While stirring, 1.0 g (3 mmol) of Na₂WO₄·2H₂O was added to the solution, and the temperature was elevated and kept at 50-55 °C for 24 h. To maintain solution homogeneity, 25 mL of MeOH was added to the reaction mixture ca. 5 h after addition of the $Na_2WO_4 \cdot 2H_2O$. The reaction progress was monitored by HPLC using a C₁₈ reverse-phase column at λ = 255 nm; 60:40 MeOH/H₂O, 0.05 M 1:1 KOAc/AcOH buffer was used as the mobile phase. After 24 h, the MeOH was removed by rotary evaporation at room temperature and the solution was neutralized with 10% NaHCO₃. The product was extracted three times with 50-mL portions of CHCl₃. The organic layer was washed with 5% NaHCO3 and distilled water and dried over MgSO₄. After filtration, the CHCl₃ was removed by rotary evaporation and the crude product was purified by column chromatography (silica gel) using 85:15 CH2Cl2/THF to yield 24-42 mg (20-37%) of products.

2-Nitro-9*H***-pyrido[2,3-***b***]indole (NO₂\alphaC): mp >270 °C; IR (KBr) 3299, 1540, 1343, 1309 cm⁻¹; ¹H NMR (300 MHz, DMSO***d***₆), \delta 12.49 (1H, s, exchangeable), 8.87 (1H, d,** *J* **= 8.2 Hz), 8.32 (1H, d,** *J* **= 7.9 Hz), 8.19 (1H, d,** *J* **= 8.2 Hz), 7.60–7.58 (2H, m), 7.35–7.30 (1H, m); ¹³C NMR (75.5 MHz, DMSO-***d***₆) \delta 153.3 (C), 149.5 (C), 141.4 (C), 131.3 (CH), 129.2 (CH), 122.8 (CH), 120.9 (CH), 120.9 (C), 119.5 (C), 112.2 (CH), 109.2 (CH); high-resolution MS** *m/e* **213.0536, C₁₁H₇N₃O₂ requires 213.0539.**

3-Methyl-2-nitro-9*H***-pyrido[2,3-***b***]indole (MeNO₂αC): mp > 270 °C; IR (KBr) 3244, 1528, 1319 cm⁻¹; ¹H NMR (300 MHz, DMSO-***d***₆) δ 12.24 (1H, s, exchangeable), 8.73 (1H, s), 8.23 (1H,**

⁽¹¹⁾ Grivas, S. J. Chem. Res. (S) 1988, 84.

⁽¹²⁾ Saito, K.; Yamazoe, Y.; Kamatachi, T.; Kato, R. *Carcinogenesis* **1983**, *4*, 1547–1550.

⁽¹³⁾ Westra, J. G. Carcinogenesis 1981, 2, 355-357.

d, J = 7.9 Hz), 7.56–7.55 (2H, m), 7.33–7.27 (1H, m), 2.58 (3H, s); ¹³C NMR (75.5 MHz, DMSO- d_6) δ 154.1 (C), 147.9 (C), 141.3 (C), 134.0 (CH), 128.8 (CH), 122.4 (CH), 120.7 (CH), 119.8 (C), 119.3 (C), 117.0 (C), 112.1 (CH), 18.3 (CH₃); high-resolution MS m/e 227.0695, C₁₂H₉N₃O₂ requires 227.0696.

2-(Hydroxylamino)-α-carboline (2-(Hydroxylamino)-9Hpyrido[2,3-b]indole) and 2-(Hydroxylamino)-3-methyl-αcarboline (2-(Hydroxylamino)-3-methyl-9H-pyrido[2,3-b]indole). General Procedure. In a two-neck 125-mL roundbottom flask, 100 mg of the nitro compound was dissolved in 100 mL of dry, peroxide-free THF (freshly distilled). While stirring under nitrogen, 140 mg of 5% Pd/C was added to the solution that was then cooled to -20 °C in a dry ice-ethylene glycol bath. After 10 min, 200 µL of N₂H₄·H₂O in four portions of 50 μ L was added to the reaction mixture by syringe over a period of 1 h. About 15 min after each addition the temperature was allowed to increase from -20 to 0 °C and remain at 0 °C for 1 min. While at 0 °C, an aliquot was taken for HPLC analysis, the temperature was lowered to -20 °C, and the next portion of N₂H₄·H₂O was added to the reaction mixture. During this time, the aliquot was analyzed by HPLC at $\lambda = 255$ nm using 60:40 MeOH/H₂O, 0.05 M 1:1 KOAc/AcOH buffer and C₁₈ reverse-phase column. About 1.5 h after the first addition of N₂H₄·H₂O, the reaction was stopped by filtering the Pd/C. The filtered solution was kept in an EtOH-dry ice bath, and then the solvent was removed by rotary evaporation at 20 °C. The product was recrystallized from EtOAc/hexanes at -20 °C to provide 70–80 mg of white solid (75–85% yield).

2-(Hydroxylamino)-9H-pyrido[2,3-b]indole (NHOHα**C):** mp 140–148 °C dec; IR (KBr) 3278, 3226, 1629, 1608, 1578, 1419 cm⁻¹; ¹H NMR (300 MHz, DMSO-*d*₆) δ 11.30 (1H, s, exchangeable), 8.78 (1H, s, exchangeable), 8.63 (1H, d, J = 1.5 Hz, exchangeable), 8.24 (1H, d, J = 8.4 Hz), 7.90 (1H, d, J = 7.7 Hz), 7.35 (1H, d, J = 8.0 Hz), 7.25 (1H, m), 7.10 (1H, m), 6.72 (1H, d, J = 8.4 Hz); ¹³C NMR (75.5 MHz, DMSO- d_6) δ 162.2 (C), 151.3 (C), 137.9 (C), 130.3 (CH), 124.2 (CH), 121.7 (C), 119.3 (CH), 119.2 (CH), 110.9 (CH), 108.2 (C), 99.7 (CH); high-resolution MS m/e 199.0749, C₁₁H₉N₃O requires 199.0746.

2-(Hydroxylamino)-3-methyl-9*H***-pyrido[2,3-***b***]indole (MeNHOHαC): mp 195–197 °C dec; IR (KBr) 3312, 1629, 1610, 1572, 1412, 1300 cm⁻¹; ¹H NMR (300 MHz, DMSO-***d***₆) δ 11.37 (1H, s, exchangeable), 8.70 (1H, s, exchangeable), 8.34 (1H, s, exchangeable), 7.97 (1H, s), 7.86 (1H, d,** *J* **= 7.6 Hz), 7.36 (1H, d,** *J* **= 7.9 Hz), 7.22 (1H, t,** *J* **= 7.5 Hz), 7.08 (1H, t,** *J* **= 7.4 Hz), 2.18 (3H, s); ¹³C NMR (75.5 MHz, DMSO-***d***₆) δ 158.3 (C), 150.1 (C), 137.5 (C), 130.0 (CH), 123.7 (CH), 121.6 (C), 119.2 (CH), 119.0 (CH), 110.9 (CH), 109.3 (C), 107.1 (C), 16.8 (CH₃); high-resolution MS** *m/e* **213.0886, C₁₂H₁₁N₃0 requires 213.0903.**

Acknowledgment. This work was supported by a grant from the American Cancer Society (CN-172).

Supporting Information Available: Tables of spectroscopic data and copies of ¹H and ¹³C NMR spectra for all nitro and hydroxylamine compounds (12 pages). This material is contained in libraries on microfiche, immediately follows this article in the microfilm version of the journal, and can be ordered from the ACS; see any current masthead page for ordering information.

JO971786V